
Connector Documentation
Release 3.3

/ELSA/MU-090XX/V3.3

Nov 09, 2021

CONTENTS

1 Preamble 1

2 List of functions 3

3 Contents 5
3.1 Multiblock connectivity . 5
3.2 Overset connectivity . 8
3.3 Overset grid connectivity for elsA solver . 33
3.4 Immersed boundary (IBM) pre-processing 37

4 Overset and Immersed Boundary transfers with pyTrees 43
4.1 Index . 45

i

ii

CHAPTER

ONE

PREAMBLE

Connector module is used to compute connectivity between meshes. It manipulates ar-
rays (as defined in Converter documentation) or CGNS/Python trees (pyTrees) as data
structures.

This module is part of Cassiopee, a free open-source pre- and post-processor for CFD sim-
ulations.

To use the Connector module with the array interface:

import Connector as X

With the pyTree interface:

import Connector.PyTree as X

1

Connector Documentation, Release 3.3

2 Chapter 1. Preamble

CHAPTER

TWO

LISTOF FUNCTIONS

– Multiblock connectivity

Connector.connectMatch(a1, a2[, same-
Zone, . . .])

Find matching boundaries.

Connector.PyTree.
connectMatchPeriodic(t[, . . .])

Find periodic matching boundaries.

Connector.PyTree.connectNearMatch(t[,
. . .])

Find boundaries that matches with a given
ratio.

Connector.PyTree.setDegeneratedBC(t[,
dim, tol])

Find degenerated boundaries (lines).

– Overset grid connectivity

Connector.blankCells(coords, cellnfields,
body)

Blank cells in coords by a X-Ray mask de-
fined by the body, within a distance delta.

Connector.blankCellsTetra(coords, . . . [,
. . .])

Blank cells in coords (by setting the cellN
to cellnval) falling inside a Tetra Mesh
mask defined by meshT4.

Connector.blankCellsTri(coords, celln-
fields, . . .)

Blank cells in coords (by setting the cellN
to cellnval) falling inside a Triangular sur-
face mesh mask defined by meshT3.

Connector.blankIntersectingCells(a,
cellN[, tol])

Blank intersecting cells in a zone.

Connector.setHoleInterpolatedPoints(celln[,
. . .])

Set interpolated points cellN=2 around
cellN=0 points.

Connector.optimizeOverlap(nodes1, cen-
ters1, . . .)

Optimize the overlap of grids defined by
nodes1 and nodes2 centers1 and centers2
define the coordinates of cell centers, mod-
ified by the double wall algorithm + cellN
variable.

Continued on next page

3

Connector Documentation, Release 3.3

Table 2 – continued from previous page
Connector.maximizeBlankedCells(a[,
depth, . . .])

Maximize the blanked region.

Connector.PyTree.
cellN2OversetHoles(t[, append])

Create OversetHole nodes from cellN field.

Connector.PyTree.setInterpData(tR,
tD[, . . .])

Compute and store overset interpolation
data.

Connector.PyTree.getOversetInfo(aR,
topTreeD)

Return information on overset connectivi-
ties.

Connector.PyTree.
extractChimeraInfo(a[, . . .])

Extract interpolated/extrapolated/orphan
points as zones.

– Overset grid connectivity for elsA solver

Connector.PyTree.setInterpolations(t[,
loc, . . .])

Compute interpolation data for chimera
and for elsA solver.

Connector.PyTree.chimeraInfo(a[,
type])

Extract Overset information when com-
puted with setInterpolations.

4 Chapter 2. List of functions

CHAPTER

THREE

CONTENTS

3.1 Multiblock connectivity

Connector.connectMatch()
Detect and set all matching windows, even partially.

Using the array interface:

res = X.connectMatch(a1, a2, sameZone=0, tol=1.e-6, dim=3)

Detect and set all matching windows between two structured arrays a1
and a2. Return the subrange of indices of abutting windows and an index
transformation from a1 to a2. If the CFD problem is 2D, then dim must be
set to 2. Parameter sameZone must be set to 1 if a1 and a2 define the same
zone.

Parameters a1,a2 (arrays) – Input data

Using the PyTree interface:

t = X.connectMatch(t, tol=1.e-6, dim=3)

Detect and set all matching windows in a zone node, a list of zone nodes or
a complete pyTree. Set automatically the Transform node corresponding to
the transformation from matching block 1 to block 2. If the CFD problem
is 2D, then dim must be set to 2.

Parameters t (pyTree, base, zone, list of zones) – input data

Return type identical to input

Example of use:

• Detect matching boundaries of a mesh (array):

5

Examples/Connector/connectMatch.py

Connector Documentation, Release 3.3

- connectMatch (array) -
import Generator as G
import Connector as X
import Geom as D
import Transform as T
import Converter as C
3D raccord i = 1 partiel profil NACA
msh = D.naca(12., 5001)
msh2 = D.line((1.,0.,0.),(2.,0.,0.),5001); msh = T.join(msh, msh2)
msh2 = D.line((2.,0.,0.),(1.,0.,0.),5001); msh = T.join(msh2, msh)
Ni = 300; Nj = 50
distrib = G.cart((0,0,0), (1./(Ni-1), 0.5/(Nj-1),1), (Ni,Nj,1))
naca = G.hyper2D(msh, distrib, "C")
res = X.connectMatch(naca,naca,sameZone=1,dim=2)
C.convertArrays2File([naca],"out.plt")
print(res)

• Add 1-to-1 abutting connectivity in a pyTree (pyTree):

- connectMatch (pyTree) -
import Generator.PyTree as G
import Connector.PyTree as X
import Converter.PyTree as C
import Transform.PyTree as T

a1 = G.cart((0.,0.,0.), (0.1, 0.1, 0.1), (11, 21, 3)); a1[0] = 'cart1'
a2 = G.cart((1., 0.2, 0.), (0.1, 0.1, 0.1), (11, 21, 3)); a2[0] = 'cart2'
t = C.newPyTree(['Base',a1,a2])
t = X.connectMatch(t)
C.convertPyTree2File(t, 'out.cgns')

Connector.PyTree.connectMatchPeriodic(t, rotationCenter=[0.,0.,0.], rotationAn-
gle=[0.,0.,0.], translation=[0.,0.,0.],
tol=1.e-6, dim=3, unitAngle=None)

Detect and set all periodic matching borders, even partially, in a zone node, a list of
zone nodes, a base, or a full pyTree. Periodicity can be defined either by rotation or
translation or by a composition of rotation and translation.

Parameters t (pyTree, base, zone, list of zones) – input data

Return type identical to input

Set automatically the Transform node corresponding to the transformation from
matching block 1 to block 2, and the ‘GridConnectivityProperty/Periodic’ for peri-
odic matching BCs.

6 Chapter 3. Contents

Examples/Connector/connectMatchPT.py

Connector Documentation, Release 3.3

If the CFD problem is 2D, then dim must be set to 2.

For periodicity by rotation, the rotation angle units can be specified by argument
unitAngle, which can be ‘Degree’,’Radian’,None.

If unitAngle=None or ‘Degree’: parameter rotationAngle is assumed to be defined in
degrees.

If unitAngle=’Radian’: parameter rotationAngle is assumed in radians.

Note:

• if the mesh is periodic in rotation and in translation separately (i.e. connecting
with some blocks in rotation, and some other blocks in translation), the function
must be applied twice.

• Since Cassiopee2.6: ‘RotationAngle’ node in ‘Periodic’ node is always defined in
Radians. A DimensionalUnits child node is also defined.

Example of use:

• Add periodic 1-to-1 abutting grid connectivity in a pyTree (pyTree):

- connectMatch (pyTree) -
import Generator.PyTree as G
import Connector.PyTree as X
import Converter.PyTree as C

a = G.cylinder((0.,0.,0.), 0.1, 1., 0., 90., 5., (11,11,11))
t = C.newPyTree(['Base',a])
t = X.connectMatchPeriodic(t, rotationCenter=[0.,0.,0.],

translation=[0.,0.,5.])
t = X.connectMatchPeriodic(t, rotationCenter=[0.,0.,0.],

rotationAngle=[0.,0.,90.])
C.convertPyTree2File(t, 'out.cgns')

Connector.PyTree.connectNearMatch(t, ratio=2, tol=1.e-6, dim=3)
Detect and set all near-matching windows, even partially in a zone node, a list of zone
nodes or a complete pyTree. A ‘UserDefinedData’ node is set, with the PointRange-
Donor, the Transform and NMRatio nodes providing information for the opposite
zone. .. warning:: connectMatch must be applied first if matching windows exist.

Parameter ratio defines the ratio between near-matching windows and can be an
integer (e.g. 2) or a list of 3 integers (e.g. [1,2,1]), specifying the nearmatching
direction to test (less CPU-consuming). If the CFD problem is 2D, then dim must be
set to 2.

Parameters t (pyTree, base, zone, list of zones) – input data

3.1. Multiblock connectivity 7

Examples/Connector/connectMatchPeriodicPT.py

Connector Documentation, Release 3.3

Return type identical to input

Example of use:

• Add n-to-m abutting grid connectivity in a pyTree (pyTree):

- connectNearMatch (pyTree) -
import Generator.PyTree as G
import Connector.PyTree as X
import Converter.PyTree as C
import Transform.PyTree as T

a1 = G.cart((0.,0.,0.), (0.1, 0.1, 0.1), (11, 21, 3)); a1[0] = 'cart1'
a2 = G.cart((1., 0.2, 0.), (0.1, 0.1, 0.1), (11, 21, 3)); a2[0] = 'cart2'
a2 = T.oneovern(a2,(1,2,1))
t = C.newPyTree(['Base',a1,a2])
t = X.connectNearMatch(t)
C.convertPyTree2File(t, 'out.cgns')

Connector.PyTree.setDegeneratedBC(t, dim=3, tol=1.e-10)
Detect all degenerated lines in 3D zones and define a BC as a ‘BCDegenerateLine’
BC type. For 2D zones, ‘BCDegeneratePoint’ type is defined. If the problem is 2D
according to (i,j), then parameter ‘dim’ must be set to 2. Parameter ‘tol’ defines a
distance below which a window is assumed degenerated.

Example of use:

• Add degenerated line as BCs in a pyTree (pyTree):

- setDegeneratedBC (pyTree) -
import Converter.PyTree as C
import Generator.PyTree as G
import Connector.PyTree as X
a = G.cylinder((0,0,0), 0., 1., 360., 0., 1, (21,21,21))
t = C.newPyTree(['Base',a])
t = X.setDegeneratedBC(t)
C.convertPyTree2File(t, "out.cgns")

3.2 Overset connectivity

Connector.blankCells()
Blank cells using X-Ray method.

Using the array interface:

8 Chapter 3. Contents

Examples/Connector/connectNearMatchPT.py
Examples/Connector/setDegeneratedBCPT.py

Connector Documentation, Release 3.3

cellns = X.blankCells(coords, cellns, body, blankingType=2, delta=1.e-
→˓10, dim=3, masknot=0, tol=1.e-8)

Blank the cells of a list of grids defined by coords (located at nodes). The
X-Ray mask is defined by bodies, which is a list of arrays. Cellnaturefield
defined in cellns is modified (0: blanked points, 1: otherwise). Some pa-
rameters can be specified: blankingType, delta, masknot, tol. Their mean-
ings are described in the table below:

Pa-
ram-
eter
value

Meaning

blank-
ing-
Type=0

blank nodes inside bodies (node_in).

blank-
ing-
Type=2

blank cell centers inside bodies (center_in).

blank-
ing-
Type=1

blank cell centers intersecting with body (cell_intersect).

blankingType=-
2

blank cell centers using an optimized cell intersection
(cell_intersect_opt) and interpolation depth=2 (blanking re-
gion may be reduced where blanking point can be interpo-
lated).

blankingType=-
1

blank cell centers using an optimized cell intersection
(cell_intersect_opt) and interpolation depth=1.

delta=0. cells are blanked in the body
delta
greater
than 0.

the maximum distance to body, in which cells are blanked

mas-
knot=0

Classical blanking applied

mas-
knot=1

Inverted blanking applied: cells out of the body are blanked

dim=3 body described by a surface and blanks 3D cells.
dim=2 body blanks 2D or 1D zones.
tol=1.e-
8 (de-
fault)

tolerance for the multiple definition of the body.

3.2. Overset connectivity 9

Connector Documentation, Release 3.3

Note: in case of blankingType=0, location of cellns and coords must be
identical.

Using the pyTree interface:

B = X.blankCells(t, bodies, BM, depth=2, blankingType='cell_intersect',␣
→˓delta=1.e-10, dim=3, tol=1.e-8, XRaydim1=1000, XRaydim2=1000)

blankCells function sets the cellN to 0 to blanked nodes or cell centers of both
structured and unstructured grids.

The location of the cellN field depends on the blankingType parameter: if
‘node_in’ is used, nodes are blanked, else centers are blanked.

The mesh to be blanked is defined by a pyTree t, where each basis defines a
Chimera component. The list of bodies blanking the grids is defined in bodies.

Each element of the list bodies is a set of CGNS/Python zones defining a closed
and watertight surface.

The blanking matrix BM is a numpy array of size nbases x nbodies.

BM(i,j)=1 means that ith basis is blanked by jth body.

BM(i,j)=0 means no blanking, and BM(i,j)=-1 means that inverted hole-cutting
is performed.

blankingType can be ‘cell_intersect’, ‘cell_intersect_opt’, ‘center_in’ or ‘node_in’.
Parameter depth is only meaningfull for ‘cell_intersect_opt’.

XRaydim1 and XRaydim2 are the dimensions of the X-Ray hole-cutting in the x
and y directions in 3D.

If the variable ‘cellN’ does not exist in the input pyTree, it is initialized to 1,
located at ‘nodes’ if ‘node_in’ is set, and at centers in other cases.

Warning: ‘cell_intersect_opt’ can be CPU time-consuming when delta>0.

Example of use:

• Blank cells (array):

- blankCells (array) -
import Converter as C
import Connector as X
import Generator as G

(continues on next page)

10 Chapter 3. Contents

Examples/Connector/blankCells.py

Connector Documentation, Release 3.3

(continued from previous page)

import Geom as D

surf = D.sphere((0,0,0), 0.5, 20)
surf = C.convertArray2Tetra(surf)

a = G.cart((-1.,-1.,-1.),(0.1,0.1,0.1), (20,20,20))
ca = C.array('cellN',19,19,19)
ca = C.initVars(ca, 'cellN', 1.)
celln = X.blankCells([a], [ca], [surf], blankingType=1, delta=0.)
a = C.node2Center(a)
celln = C.addVars([[a], celln])
C.convertArrays2File(celln, 'out.plt')

in place-modifies cellN
surf = D.sphere((0,0,0), 0.5, 20)
surf = C.convertArray2Tetra(surf)

a = G.cart((-1.,-1.,-1.),(0.1,0.1,0.1), (20,20,20))
ca = C.array('cellN',19,19,19)
ca = C.initVars(ca, 'cellN', 1.)
X._blankCells([a], [ca], [surf], blankingType=1, delta=0.)
a = C.node2Center(a)
celln = C.addVars([[a], celln])
C.convertArrays2File(celln, 'out.plt')

• Blank cells (pyTree):

- blankCells (pyTree) -
import Converter.PyTree as C
import Connector.PyTree as X
import Generator.PyTree as G
import Geom.PyTree as D

surf = D.sphere((0,0,0), 0.5, 20)

a = G.cart((-1.,-1.,-1.),(0.1,0.1,0.1), (20,20,20))
t = C.newPyTree(['Cart',a])
C._initVars(t, 'centers:cellN', 1.)

bodies = [[surf]]
Matrice de masquage (arbre d'assemblage)
import numpy
BM = numpy.array([[1]])

(continues on next page)

3.2. Overset connectivity 11

Examples/Connector/blankCellsPT.py

Connector Documentation, Release 3.3

(continued from previous page)

t = X.blankCells(t, bodies, BM, blankingType='cell_intersect', delta=0.)
C.convertPyTree2File(t, 'out.cgns')

Connector.blankCellsTetra()
Using the array interface:

cellns = X.blankCellsTetra(coords, cellns, body, blankingType=2,␣
→˓tol=1.e-12)

Blanks the input grids nodes or cells (depending on the blankingType value)
that fall inside a volume body mask. The blanking is achieved by setting
the Cellnaturefield to cellnval (0 by default) in cellns.

The input grids are defined by coords located at nodes as a list of arrays.
The body mask is defined by sets of tetrahedra in any orientation, as a list
of arrays.

If the blankingMode is set to 1 (overwrite mode), Cellnaturefield is reset
to 1 for any node/cell outside the body mask. Hence the value of 1 is
forbidden for cellnval upon entry (it will be replaced by 0).

The parameters meanings and values are described in the table below:

Parameter
value

Meaning

blanking-
Type=0

blanks the nodes falling inside the body masks (node_in).

blanking-
Type=2

blanks the cells having their center falling inside the body
masks (center_in).

blanking-
Type=1

blanks the cells that intersect or fall inside the body masks
(cell_intersect).

tol=1.e-12 tolerance for detecting intersections (NOT USED CUR-
RENTLY).

cellnval=0
(default)

value used for flagging as blanked.

blanking-
Mode=0
(default)

Appending mode: cellns is only modified for nodes/cells
falling inside the body mask by setting the value in cellns
to cellnval.

blanking-
Mode=1

Overwriting mode: cellns is modified for both nodes/cells
falling inside (set to cellnval) and outside (set to 1) the
body mask.

12 Chapter 3. Contents

Connector Documentation, Release 3.3

Warning: in case of blankingType=0, location of cellns and coords
must be identical.

Using the pyTree interface:

B = X.blankCellsTetra(t, bodies, BM, blankingType='node_in', tol=1.e-
→˓12, cellnval=0, overwrite=0)

Blanks the input grids nodes or cells (depending on the blankingType value)
that fall inside a volume body mask.

The blanking is achieved by setting the Cellnaturefield to cellnval (0 by
default) in cellns.

The mesh to be blanked is defined by a pyTree t, where each basis defines
a Chimera component. The list of bodies blanking the grids is defined in
bodies.

Each element of the list bodies is a set of CGNS/Python zones defining a
tetrahedra mesh.

The blanking matrix BM is a numpy array of size nbases x nbodies.

BM(i,j)=1 means that ith basis is blanked by jth body.

BM(i,j)=0 means no blanking, and BM(i,j)=-1 means that inverted hole-
cutting is performed.

blankingType can be ‘cell_intersect’, ‘center_in’ or ‘node_in’.

If the variable ‘cellN’ does not exist in the input pyTree, it is initialized to
1, located at ‘nodes’ if ‘node_in’ is set, and at centers in other cases.

If the overwrite is set to 1 (overwrite mode), Cellnaturefield is reset to 1 for
any node/cell outside the body mask.

Hence the value of 1 is forbidden for cellnval upon entry (it will be replaced
by 0).

Example of use:

• Blank cells with a tetra mesh (array):

- blankCellsTetra (array) - 'NODE IN'
import Converter as C
import Connector as X
import Generator as G

Tet mask

(continues on next page)

3.2. Overset connectivity 13

Examples/Connector/blankCellsTetra.py

Connector Documentation, Release 3.3

(continued from previous page)

mT4 = G.cart((0.,0.,0.), (0.1,0.1,0.2), (10,10,10))
mT4 = C.convertArray2Tetra(mT4)
#C.convertArrays2File([mT4], 'maskT4.plt', 'bin_tp')

Mesh to blank
a = G.cart((-5.,-5.,-5.), (0.5,0.5,0.5), (100,100,100))
#C.convertArrays2File([a], 'bgm.plt')

ca = C.array('cellN',100,100,100)
ca = C.initVars(ca, 'cellN', 1.)
#C.convertArrays2File([ca], 'ca.plt')

celln = X.blankCellsTetra([a], [ca], [mT4], blankingType=0, tol=1.e-12)

celln = C.addVars([[a], celln])
C.convertArrays2File(celln, 'out.plt')

• Blank cells with a tetra mesh (pyTree):

- blankCellsTetra (pyTree) - 'NODE IN'
import Converter.PyTree as C
import Connector.PyTree as X
import Generator.PyTree as G

Tet mask
mT4 = G.cart((0.,0.,0.), (0.1,0.1,0.2), (10,10,10))
mT4 = C.convertArray2Tetra(mT4)

Mesh to blank
a = G.cart((-5.,-5.,-5.), (0.5,0.5,0.5), (100,100,100))

t = C.newPyTree(['Cart',a])
C._initVars(t, 'centers:cellN', 1.)

masks = [[mT4]]
Matrice de masquage (arbre d'assemblage)
import numpy
BM = numpy.array([[1]])

t1 = X.blankCellsTetra(t, masks, BM, blankingType='node_in', tol=1.e-12)
C.convertPyTree2File(t1, 'out.cgns')

t2 = C.convertArray2Tetra(t)
t2 = X.blankCellsTetra(t2, masks, BM, blankingType='node_in', tol=1.e-12)

(continues on next page)

14 Chapter 3. Contents

Examples/Connector/blankCellsTetraPT.py

Connector Documentation, Release 3.3

(continued from previous page)

C.convertPyTree2File(t2, 'out2.cgns')

t3 = C.convertArray2NGon(t)
t3 = X.blankCellsTetra(t3, masks, BM, blankingType='node_in', tol=1.e-12)
C.convertPyTree2File(t3, 'out3.cgns')

Connector.blankCellsTri()
Using the array interface:

cellns = X.blankCellsTri(coords, cellns, body, blankingType=2, tol=1.
→˓e-12, cellnval=0, blankingMode=0)

Blanks the input grids nodes or cells (depending on the blankingType value)
that fall inside a surfacic body mask.

The blanking is achieved by setting the Cellnaturefield to cellnval (0 by
default) in cellns.

The input grids are defined by coords located at nodes as a list of arrays.
The body mask is defined by triangular surface meshes in any orientation,
as a list of arrays.

If the blankingMode is set to 1 (overwrite mode), Cellnaturefield is reset
to 1 for any node/cell outside the body mask. Hence the value of 1 is
forbidden for cellnval upon entry (it will be replaced by 0).

The parameters meanings and values are described in the table below:

3.2. Overset connectivity 15

Connector Documentation, Release 3.3

Parameter
value

Meaning

blanking-
Type=0

blanks the nodes falling inside the body masks (node_in).

blanking-
Type=2

blanks the cells having their center falling inside the body
masks (center_in).

blanking-
Type=1

blanks the cells that intersect or fall inside the body masks
(cell_intersect).

tol=1.e-12
(default)

tolerance for detecting intersections (NOT USED CUR-
RENTLY).

cellnval=0
(default)

value used for flagging as blanked.

blanking-
Mode=0
(default)

Appending mode: cellns is only modified for nodes/cells
falling inside the body mask by setting the value in cellns
to cellnval.

blanking-
Mode=1

Overwriting mode: cellns is modified for both nodes/cells
falling inside (set to cellnval) and outside (set to 1) the
body mask.

Warning: in case of blankingType=0, location of cellns and coords
must be identical.

Using the pyTree interface:

B = X.blankCellsTri(t, bodies, BM, blankingType='node_in', tol=1.e-12,
→˓ cellnval=0, overwrite=0)

Blanks the input grids nodes or cells (depending on the blankingType value)
that fall inside a volume body mask.

The blanking is achieved by setting the Cellnaturefield to cellnval (0 by
default) in cellns.

The mesh to be blanked is defined by a pyTree t, where each basis defines
a Chimera component. The list of bodies blanking the grids is defined in
bodies.

Each element of the list bodies is a set of CGNS/Python zones defining a
triangular watertight closed surface.

The blanking matrix BM is a numpy array of size nbases x nbodies.

BM(i,j)=1 means that ith basis is blanked by jth body.

16 Chapter 3. Contents

Connector Documentation, Release 3.3

BM(i,j)=0 means no blanking, and BM(i,j)=-1 means that inverted hole-
cutting is performed.

blankingType can be ‘cell_intersect’, ‘center_in’ or ‘node_in’.

If the variable ‘cellN’ does not exist in the input pyTree, it is initialized to
1, located at ‘nodes’ if ‘node_in’ is set, and at centers in other cases.

If the overwrite is set to 1 (overwrite mode), Cellnaturefield is reset to 1 for
any node/cell outside the body mask.

Hence the value of 1 is forbidden for cellnval upon entry (it will be replaced
by 0).

Example of use:

• Blank cells with a triangular surface mask (array):

- blankCellsTri (array) - 'NODE IN'
import Converter as C
import Connector as X
import Generator as G
import Geom as D
import Post as P

Tri mask
m = G.cart((0.,0.,0.), (0.1,0.1,0.2), (10,10,10))
m = P.exteriorFaces(m)

Mesh to blank
a = G.cart((-5.,-5.,-5.), (0.5,0.5,0.5), (100,100,100))
celln init
ca = C.array('cellN',100,100,100)
ca = C.initVars(ca, 'cellN', 1.)
Blanking
celln = X.blankCellsTri([a], [ca], m, blankingType=0, tol=1.e-12)
celln = C.addVars([[a], celln])
C.convertArrays2File(celln, 'out0.plt')

• Blank cells with a triangular surface mask (pyTree):

- blankCellsTri (pyTree) - 'NODE IN'
import Converter.PyTree as C
import Connector.PyTree as X
import Generator.PyTree as G
import Geom.PyTree as D
import Post.PyTree as P

(continues on next page)

3.2. Overset connectivity 17

Examples/Connector/blankCellsTri.py
Examples/Connector/blankCellsTriPT.py

Connector Documentation, Release 3.3

(continued from previous page)

Tet mask
m = G.cart((0.,0.,0.), (0.1,0.1,0.2), (10,10,10))
m = P.exteriorFaces(m)

Mesh to blank
a = G.cart((-5.,-5.,-5.), (0.5,0.5,0.5), (100,100,100))

t = C.newPyTree(['Cart',a])
C._initVars(t, 'centers:cellN', 1.)

masks = [[m]]
Matrice de masquage (arbre d'assemblage)
import numpy
BM = numpy.array([[1]])

t = X.blankCellsTri(t, masks, BM, blankingType='node_in', tol=1.e-12)
C.convertPyTree2File(t, 'out.cgns')

Connector.setHoleInterpolatedPoints()
Using the array interface:

a = X.setHoleInterpolatedPoints(a, depth=2, dir=0, loc='centers',␣
→˓cellNName='cellN')

Compute the fringe of interpolated points around a set of blanked points
in a mesh a. Parameter depth is the number of layers of interpolated points
to be set. If depth > 0 the fringe of interpolated points is set outside the
blanked zones, whereas if depth < 0, the depth layers of blanked points
are marked as to be interpolated. If dir=0, uses a directional stencil of
depth points, if dir=1, uses a star shape stencil, if dir=2, uses a diamond
stencil. Blanked points are identified by the variable ‘cellN’; ‘cellN’ is set to
2 for the fringe of interpolated points. If cellN is located at cell centers, set
loc parameter to ‘centers’, else loc=’nodes’.

Using the pyTree interface:

t = X.setHoleInterpolatedPoints(t, depth=2, dir=0, loc='centers',␣
→˓cellNName='cellN')

Compute the fringe of interpolated points around a set of blanked points in
a pyTree t. Parameter depth is the number of layers of interpolated points
that are built; if depth > 0 the fringe of interpolated points is outside the
blanked zones, and if depth < 0, it is built towards the inside. If dir=0, uses
a directional stencil of depth points, if dir=1, uses a star shape stencil, if
dir=2, uses a diamond stencil. Blanked points are identified by the variable

18 Chapter 3. Contents

Connector Documentation, Release 3.3

‘cellN’ located at mesh nodes or centers. ‘cellN’ is set to 2 for the fringe of
interpolated points.

Example of use:

• Set the fringe of interpolated points near blanked points (array):

- setHoleInterpolatedPts (array) -
import Converter as C
import Connector as X
import Generator as G

def sphere(x,y,z):
if x*x+y*y+z*z < 0.5**2 : return 0.
else: return 1.

a = G.cart((-1.,-1.,-1.),(0.1,0.1,0.1), (20,20,20))
celln = C.node2Center(a)
celln = C.initVars(celln, 'cellN', sphere, ['x','y','z'])
celln = X.setHoleInterpolatedPoints(celln, depth=1)
C.convertArrays2File([celln], 'out.plt')

• Set the fringe of interpolated points near the blanked points (pyTree):

- setHoleInterpolatedPoints (pyTree) -
import Converter.PyTree as C
import Connector.PyTree as X
import Generator.PyTree as G

N = 101
h = 2./(N-1)
a = G.cart((-1.,-1.,-1.),(h,h,h), (N,N,N))
t = C.newPyTree(['Cart', a])
C._initVars(t,'{centers:cellN}=(1.-({centers:CoordinateX}*{centers:CoordinateX}+
→˓{centers:CoordinateY}*{centers:CoordinateY}+{centers:CoordinateZ}*
→˓{centers:CoordinateZ}<0.25))')

X._setHoleInterpolatedPoints(t, depth=1)
C.convertPyTree2File(t, 'out.cgns')

Connector.optimizeOverlap()
Using the array interface:

cellns = X.optimizeOverlap(nodes1, centers1, nodes2, centers2,␣
→˓prio1=0, prio2=0)

3.2. Overset connectivity 19

Examples/Connector/setHoleInterpolatedPts.py
Examples/Connector/setHoleInterpolatedPtsPT.py

Connector Documentation, Release 3.3

Optimize the overlap between two zones defined by nodes1 and nodes2,
centers1 and centers2 correspond to the mesh located at centers and the
field ‘cellN’. The field ‘cellN’ located at centers is set to 2 for interpolable
points. Priorities can be defined for zones: prio1=0 means that the priority
of zone 1 is high. If two zones have the same priority, then the cell volume
criterion is used to set the cellN to 2 for one of the overlapping cells, the
other not being modified. If the priorities are not specified, the cell volume
criterion is applied also:

Using the pyTree interface:

t = X.optimizeOverlap(t, double_wall=0, priorities=[], planarTol=0.)

Optimize the overlapping between all structured zones defined in a pyTree
t. The ‘cellN’ variable located at cell centers is modified, such that cellN=2
for a cell interpolable from another zone. Double wall projection technique
is activated if ‘double_wall’=1. Parameter planarTol can be useful for dou-
ble wall cases, in the case when double wall surfaces are planar but distant
from planarTol to each other. The overlapping is optimized between zones
from separated bases, and is based on a priority to the cell of smallest size.
One can impose a priority to a base over another base, using the list priori-
ties. For instance, priorities = [‘baseName1’,0, ‘baseName2’,1] means that
zones from base of name ‘baseName1’ are preferred over zones from base
of name ‘baseName2’:

Example of use:

• Optimize overlapping (array):

- optimizeOverlap (array) -
import Converter as C
import Generator as G
import Transform as T
import Connector as X

Ni = 50; Nj = 50; Nk = 2
a = G.cart((0,0,0),(1./(Ni-1), 1./(Nj-1),1), (Ni,Nj,Nk))
b = G.cart((0,0,0),(2./(Ni-1), 2./(Nj-1),1), (Ni,Nj,Nk))
a = T.rotate(a, (0,0,0), (0,0,1), 10.)
a = T.translate(a, (0.5,0.5,0))

ca = C.node2Center(a); ca = C.initVars(ca, 'cellN', 1.)
cb = C.node2Center(b); cb = C.initVars(cb, 'cellN', 1.)
res = X.optimizeOverlap(a, ca, b, cb)
C.convertArrays2File(res, "out.plt")

• Optimize overlapping (pyTree):

20 Chapter 3. Contents

Examples/Connector/optimizeOverlap.py
Examples/Connector/optmimizeOverlapPT.py

Connector Documentation, Release 3.3

- optimizeOverlap (pyTree) -
import Converter.PyTree as C
import Generator.PyTree as G
import Transform.PyTree as T
import Connector.PyTree as X

Ni = 50; Nj = 50; Nk = 2
a = G.cart((0,0,0),(1./(Ni-1), 1./(Nj-1),1), (Ni,Nj,Nk))
b = G.cart((0,0,0),(2./(Ni-1), 2./(Nj-1),1), (Ni,Nj,Nk)); b[0] = 'cart2'
a = T.rotate(a, (0,0,0), (0,0,1), 10.)
a = T.translate(a, (0.5,0.5,0))
t = C.newPyTree(['Base1', a, 'Base2', b])
t = X.optimizeOverlap(t)
C.convertPyTree2File(t, "out.cgns")

Connector.maximizeBlankedCells(a, depth=2, dir=1)
Change useless interpolated points status (2) to blanked points (0). If dir=0, uses a
directional stencil of depth points, if dir=1, uses a full depth x depth x depth stencil.

Example of use:

• Maximize blanked cells (array):

- maximizeBlankedCells (array) -
import Converter as C
import Connector as X
import Generator as G

def F(x,y):
if (x+y<1): return 1
else: return 2

Ni = 50; Nj = 50
a = G.cart((0,0,0),(1./(Ni-1),1./(Nj-1),1),(Ni,Nj,1))
a = C.initVars(a, 'cellN', F, ['x','y'])
a = X.maximizeBlankedCells(a, 2)
C.convertArrays2File([a], 'out.plt')

• Maximize blanked cells (pyTree):

- maximizeBlankedCells (pyTree) -
import Converter.PyTree as C
import Connector.PyTree as X
import Generator.PyTree as G

(continues on next page)

3.2. Overset connectivity 21

Examples/Connector/maximizeBlankedCells.py
Examples/Connector/maximizeBlankedCellsPT.py

Connector Documentation, Release 3.3

(continued from previous page)

def F(x,y):
if (x+y<1): return 1
else: return 2

Ni = 50; Nj = 50
a = G.cart((0,0,0),(1./(Ni-1),1./(Nj-1),1),(Ni,Nj,1))
a = C.initVars(a,'cellN', F,

['CoordinateX','CoordinateY'])
a = C.node2Center(a, 'cellN')
a = C.rmVars(a,'cellN')
t = C.newPyTree(['Base',2]); t[2][1][2].append(a)
t = X.maximizeBlankedCells(t, 2)
C.convertPyTree2File(t, 'out.cgns')

Connector.setDoublyDefinedBC(a, cellN, listOfInterpZones, listOfCelln, range,
depth=2)

When a border of zone z is defined by doubly defined BC in range=[i1,i2,j1,j2,k1,k2],
one can determine whether a point is interpolated or defined by the physical BC. The
array cellN defines the cell nature field at centers for zone z. If a cell is interpolable
from a donor zone, then the cellN is set to 2 for this cell. The lists listOfInterpZones
and listOfCelln are the list of arrays defining the interpolation domains, and corre-
sponding cell nature fields. depth can be 1 or 2. If case of depth=2, if one point of
the two layers is not interpolable, then celln is set to 1 for both points:

Example of use:

• Set interpolated/BC points on doubly defined BCs (array):

- setDoublyDefinedBC (array) -
import Converter as C
import Connector as X
import Generator as G

a = G.cart((0,0,0),(1,1,1),(10,10,10))
b = G.cart((2.5,2.5,-2.5),(0.5,0.5,0.5),(10,10,30))
celln = C.array('cellN',a[2]-1,a[3]-1,a[4]-1)
celln = C.initVars(celln, 'cellN', 1)
indmax = celln[2]*celln[3]
celln[1][0][0:indmax] = 2
cellnb = C.array('cellN',b[2]-1,b[3]-1,b[4]-1)
cellnb = C.initVars(cellnb, 'cellN', 1)
celln = X.setDoublyDefinedBC(a, celln, [b], [cellnb], [1,a[2],1,a[3],1,1],␣
→˓depth = 1)
ac = C.node2Center(a)

(continues on next page)

22 Chapter 3. Contents

Examples/Connector/setDoublyDefinedBC.py

Connector Documentation, Release 3.3

(continued from previous page)

ac = C.addVars([ac,celln])
C.convertArrays2File([ac], 'out.plt')

• Set interpolated/BC points on doubly defined BCs (pyTree):

- setDoublyDefinedBC (pyTree) -
import Converter.PyTree as C
import Connector.PyTree as X
import Generator.PyTree as G
import Transform.PyTree as T
import Converter.Internal as Internal
a = G.cart((0,0,0),(1,1,1),(10,10,10))
b = G.cart((2.5,2.5,-2.5),(0.5,0.5,0.5),(10,10,30)); b[0] = 'fente'
b = T.splitNParts(b,2)
C._addBC2Zone(a, 'overlap1', 'BCOverlap', 'kmin', zoneDonor=[
→˓'FamilySpecified:FENTE'], rangeDonor='doubly_defined')
t = C.newPyTree(['Base1','Base2'])
t[2][1][2].append(a); t[2][2][2]+=b
C._addFamily2Base(t[2][2], 'FENTE')
for z in Internal.getZones(t[2][2]): C._tagWithFamily(z,'FENTE')
C._initVars(t, 'centers:cellN', 1)
t = X.applyBCOverlaps(t)
t = X.setDoublyDefinedBC(t)
C.convertPyTree2File(t, 'out.cgns')

Connector.blankIntersectingCells(a, cellN, tol=1.e-10)
Blank intersecting cells of a 3D mesh. Only faces normal to k-planes for structured
meshes and faces normal to triangular faces for prismatic meshes, and faces normal
to 1234 and 5678 faces for hexahedral meshes are tested. The cellN is set to 0
for intersecting cells/elements. Input data are A the list of meshes, cellN the list of
cellNatureField located at cell centers. Array version: the cellN must be an array
located at centers, defined separately

Blank intersecting cells of a 3D mesh. Only faces normal to k-planes for structured
meshes and faces normal to triangular faces for prismatic meshes, and faces nor-
mal to 1234 and 5678 faces for hexahedral meshes are tested. Set the cellN to 0
for intersecting cells/elements. Input data are A the list of meshes, cellN the list
of cellNatureField located at cell centers: The cellN variable is defined as a Flow-
Solution#Center node. The cellN is set to 0 for intersecting and negative volume
cells:

a = X.blankIntersectingCells(a, tol=1.e-10, depth=2)

Example of use:

3.2. Overset connectivity 23

Examples/Connector/setDoublyDefinedBCPT.py

Connector Documentation, Release 3.3

• Blank intersecting cells (array):

- blankIntersectingCells (array)
import Converter as C
import Generator as G
import Transform as T
import Connector as X
a1 = G.cart((0.,0.,0.),(1.,1.,1.),(11,11,11))
a2 = T.rotate(a1, (0.,0.,0.), (0.,0.,1.),10.)
a2 = T.translate(a2, (7.,5.,5.))
A = [a1,a2]
Ac = C.node2Center(A); Ac = C.initVars(Ac,'cellN',1.);
Ac = X.blankIntersectingCells(A, Ac, tol=1.e-10)
C.convertArrays2File(Ac,"out.plt")

• Blank intersecting cells (pyTree):

- blankIntersectingCells (pyTree)
import Converter.PyTree as C
import Generator.PyTree as G
import Transform.PyTree as T
import Connector.PyTree as X

a1 = G.cart((0.,0.,0.),(1.,1.,1.),(11,11,11))
a2 = T.rotate(a1, (0.,0.,0.), (0.,0.,1.),10.)
a2 = T.translate(a2, (7.,5.,5.)); a1[0] = 'cart1'; a2[0] = 'cart2'
t = C.newPyTree(['Base',a1,a2])
C._initVars(t,'centers:cellN',1.)
t2 = X.blankIntersectingCells(t, tol=1.e-10)
C.convertPyTree2File(t2, "out.cgns")

Connector.getIntersectingDomains(t, t2=None, method=’AABB’, taabb=None,
tobb=None, taabb2=None, tobb2=None)

Create a Python dictionary describing the intersecting zones. If t2 is not provided,
then the computed dictionary states the self-intersecting zone names, otherwise, it
computes the intersection between t and t2. Mode can be ‘AABB’, for Axis-Aligned
Bounding Box method, ‘OBB’ for Oriented Bounding Box method, or ‘hybrid’, using
a combination of AABB and OBB which gives the most accurate result. Depending
on the selected mode, the user can provide the corresponding AABB and/or OBB
PyTrees of t and/or t2, so that the algorithm will reuse those BB PyTrees instead of
calculating them.

Example of use:

• Create intersection dictionary (array):

24 Chapter 3. Contents

Examples/Connector/blankIntersectingCells.py
Examples/Connector/blankIntersectingCellsPT.py
Examples/Connector/getIntersectingDomains.py

Connector Documentation, Release 3.3

- getIntersectingDomainsAABB (array) -
import Generator as G
import Converter as C
import Connector as X

a = G.cart((0.,0,0), (1,1,1), (10,10,10))
b = G.cart((9.,0,0), (1,1,1), (10,10,10))

bb = G.BB([a,b])
ret = X.getIntersectingDomainsAABB(bb)
print(ret)

• Create intersection dictionary (pyTree):

- getIntersectingDomains (pyTree) -
import Generator.PyTree as G
import Connector.PyTree as X
import Converter.PyTree as C

t = C.newPyTree(['Base1'])
Ni = 4; Nj = 4; Nk = 4; dx = 0.
for i in range(10):

z = G.cart((dx,dx,dx),(1./(Ni-1), 1./(Nj-1),1./(Nk-1)), (Ni,Nj,Nk))
t[2][1][2] += [z]
dx += 0.3

interDict = X.getIntersectingDomains(t, method='hybrid')
print('Does cart.1 intersect cart.2 ?','cart.1' in interDict['cart.2'])
print('List of zones intersecting cart.2:', interDict['cart.2'])

Connector.getCEBBIntersectingDomains(A, B, sameBase)
Detect the domains defined in the list of bases B whose CEBB intersect domains
defined in base A. Return the list of zone names for each basis. If sameBase=1, the
intersecting domains are also searched in base:

Example of use:

• detect CEBB intersection between bases (pyTree):

- getCEBBIntersectingDomains (pyTree) -
import Connector.PyTree as X
import Converter.PyTree as C
import Generator.PyTree as G
import Converter.Internal as Internal

(continues on next page)

3.2. Overset connectivity 25

Examples/Connector/getIntersectingDomainsPT.py
Examples/Connector/getCEBBIntersectingDomainsPT.py

Connector Documentation, Release 3.3

(continued from previous page)

a = G.cart((0.,0.,0.),(0.1,0.1,0.1),(10,10,10)); a[0] = 'cart1'
b = G.cart((0.5,0.,0.),(0.1,0.1,0.1),(10,10,10)); b[0] = 'cart2'
c = G.cart((0.75,0.,0.),(0.1,0.1,0.1),(10,10,10)); c[0] = 'cart3'

t = C.newPyTree(['Cart']); t[2][1][2] += [a, b, c]
bases = Internal.getNodesFromType(t, 'CGNSBase_t')
base = bases[0]
doms = X.getCEBBIntersectingDomains(base, bases, 1); print(doms)

X.getCEBBTimeIntersectingDomains(base, func, bases, funcs, inititer=0, niter=1,
dt=1, sameBase)

in a Chimera pre-processing for bodies in relative motion, it can be useful to deter-
mine intersecting domains at any iteration. niter defines the number of iterations on
which CEBB intersections are detected, starting from iteration inititer. dt defines the
timestep. func defines a python function defining the motion of base, funcs is the list
of python functions describing motions for bases.

Warning:

1. motions here are only relative motions. If all bases are translated with the
same translation motion, it must not be defined in func.

2. If no motion is defined on a basis, then the corresponding function must be
[]:

Example of use:

• CEBB intersection between bases with motions (pyTree):

- getCEBBIntersectingDomains (pyTree) -
import Connector.PyTree as X
import Converter.PyTree as C
import Generator.PyTree as G
import Converter.Internal as Internal
from math import cos, sin

Coordonnees du centre de rotation dans le repere absolu
def centerAbs(t): return [t, 0, 0]

Coordonnees du centre de la rotation dans le repere entraine
def centerRel(t): return [5, 5, 0]

Matrice de rotation

(continues on next page)

26 Chapter 3. Contents

Examples/Connector/getCEBBTimeIntersectingDomainsPT.py

Connector Documentation, Release 3.3

(continued from previous page)

def rot(t):
omega = 30.
m = [[cos(omega*t), -sin(omega*t), 0],

[sin(omega*t), cos(omega*t), 0],
[0, 0, 1]]

return m

Mouvement complet
def F(t): return (centerAbs(t), centerRel(t), rot(t))

a = G.cylinder((0.,0.,0.), 0.5, 1., 360., 0., 2., (50,50,3))
--- CL
a = C.addBC2Zone(a,'wall','BCWall','jmin')
--- champ aux noeuds
t = C.newPyTree(['Cylindre']); t[2][1][2].append(a)
--- Equation state
t[2][1] = C.addState(t[2][1], 'EquationDimension', 3)
b = G.cylinder((1.5,0.,0.), 0.5, 1., 360., 0., 4., (50,50,3))
--- champ aux centres
--- CL
b = C.addBC2Zone(b,'wall','BCWall','jmin')
t[2][1][2].append(b); b[0]='cylinder2'
#
dt = 1.; Funcs = [F,[]]
b1 = G.cart((-2.,-2.,0.),(0.4,0.4,1),(11,11,4))
b2 = G.cart((-4.,-2.,0.),(0.4,0.4,1),(11,11,4))
b3 = G.cart((2.,-2.,0.),(0.4,0.4,1),(11,11,4))
b4 = G.cart((-2.,-2.,3.),(0.4,0.4,1),(11,11,4))
b5 = G.cart((-4.,-2.,3.),(0.4,0.4,1),(11,11,4))
b6 = G.cart((2.,-2.,3.),(0.4,0.4,1),(11,11,4))
#
t = C.addBase2PyTree(t,'Cart');t[2][2][2] = [b1,b2,b3,b4,b5,b6]
t = C.initVars(t, 'centers:cellN', 1.)
t = C.initVars(t, 'Density', 2.)
bases = Internal.getNodesFromType(t,'CGNSBase_t'); base = bases[0]
doms = X.getCEBBTimeIntersectingDomains(base, F, bases, Funcs, 0, 6, dt,␣
→˓sameBase=1)
print(doms)

X.applyBCOverlaps(t, depth=2, loc=’centers’)
set the cellN to 2 for the fringe nodes or cells (depending on parameter ‘loc’=’nodes’
or ‘centers’) near the overlap borders defined in the pyTree t. Parameter ‘depth’
defines the number of layers of interpolated points.

Example of use:

3.2. Overset connectivity 27

Connector Documentation, Release 3.3

• set cellN to 2 near overlap BCs in a pyTree (pyTree):

- applyBCOverlaps (pyTree) -
import Converter.PyTree as C
import Connector.PyTree as X
import Generator.PyTree as G

a = G.cylinder((0,0,0), 1., 1.5, 360., 0., 1., (30,30,10))
a = C.addBC2Zone(a, 'overlap1', 'BCOverlap', 'jmin')
t = C.newPyTree(['Base',a])
t = X.applyBCOverlaps(t)
C.convertPyTree2File(t, 'out.cgns')

X.setDoublyDefinedBC(t, depth=2)
when a border is defined by doubly defined BC, one can determine whether a point
is interpolated or defined by the physical BC. The cellN is set to 2 if cells near the
doubly defined BC are interpolable from a specified donor zone:

Example of use:

• set interpolated/BC points on doubly defined BCs (pyTree):

- setDoublyDefinedBC (pyTree) -
import Converter.PyTree as C
import Connector.PyTree as X
import Generator.PyTree as G
import Transform.PyTree as T
import Converter.Internal as Internal
a = G.cart((0,0,0),(1,1,1),(10,10,10))
b = G.cart((2.5,2.5,-2.5),(0.5,0.5,0.5),(10,10,30)); b[0] = 'fente'
b = T.splitNParts(b,2)
C._addBC2Zone(a, 'overlap1', 'BCOverlap', 'kmin', zoneDonor=[
→˓'FamilySpecified:FENTE'], rangeDonor='doubly_defined')
t = C.newPyTree(['Base1','Base2'])
t[2][1][2].append(a); t[2][2][2]+=b
C._addFamily2Base(t[2][2], 'FENTE')
for z in Internal.getZones(t[2][2]): C._tagWithFamily(z,'FENTE')
C._initVars(t, 'centers:cellN', 1)
t = X.applyBCOverlaps(t)
t = X.setDoublyDefinedBC(t)
C.convertPyTree2File(t, 'out.cgns')

Connector.PyTree.cellN2OversetHoles(t)
Compute the OversetHoles node into a pyTree from the cellN field, located at nodes
or centers. For structured zones, defines it as a list of ijk indices, located at nodes
or centers. For unstructured zones, defines the OversetHoles node as a list of indices

28 Chapter 3. Contents

Examples/Connector/applyBCOverlapsPT.py
Examples/Connector/setDoublyDefinedBCPT.py

Connector Documentation, Release 3.3

ind, defining the cell vertices that are of cellN=0 if the cellN is located at nodes, and
defining the cell centers that are of cellN=0 if the cellN is located at centers.

The OversetHoles nodes can be then dumped to files, defined by the indices of
blanked nodes or cells.

Example of use:

• Create overset hole nodes (pyTree):

- cellN2OversetHoles (pyTree) -
import Converter.PyTree as C
import Connector.PyTree as X
import Generator.PyTree as G

a = G.cart((0,0,0),(1,1,1),(10,10,10))
C._initVars(a, 'centers:cellN', 0)
a = X.cellN2OversetHoles(a)
C.convertPyTree2File(a, 'out.cgns')

• Dump overset hole nodes to file (pyTree):

- cellN2OversetHoles (pyTree) -
- Dumping the OversetHoles node to files -
import Converter.PyTree as C
import Connector.PyTree as X
import Generator.PyTree as G
import Converter.Internal as Internal
import Converter

a = G.cart((0,0,0),(1,1,1),(10,10,10))
b = G.cart((0.5,0.5,0.5),(1,1,1),(10,10,10))
t = C.newPyTree(['Base1','Base2'])
t[2][1][2].append(a); t[2][2][2].append(b)
t = C.addBC2Zone(t, 'overlap1', 'BCOverlap', 'imin')
C._initVars(t, 'centers:cellN', 0)
t = X.applyBCOverlaps(t)
t = X.cellN2OversetHoles(t)

zones = Internal.getNodesFromType(t, 'Zone_t')
for z in zones:

ho = Internal.getNodesFromType(z, 'OversetHoles_t')
if ho != []:

h = ho[0][2][1][1]
array = ['cell_index', h, h.size, 1, 1]
Converter.convertArrays2File([array], 'hole_'+z[0]+'.v3d',

'bin_v3d')

3.2. Overset connectivity 29

Examples/Connector/cellN2OversetHolesPT.py
Examples/Connector/cellN2OversetHolesPT2.py

Connector Documentation, Release 3.3

Connector.PyTree.setInterpData(aR, aD, double_wall=0, order=2, penalty=1,
nature=0, loc=’nodes’, storage=’direct’, top-
TreeRcv=None, topTreeDnr=None, same-
Name=0)

Compute and store in a pyTree the interpolation information (donor and receptor
points, interpolation type, interpolation coefficients) given receptors defined by aR,
donor zones given by aD. If storage=’direct’, then aR with interpolation data stored in
receptor zones are returned, and if storage=’inverse’, then aD with interpolation data
stored in donor zones are returned. Donor zones can be structured or unstructured
TETRA. receptor zones can be structured or unstructured.

Interpolation order can be 2, 3 or 5 for structured donor zones, only order=2 for
unstructured donor zones is performed.

Parameter loc can ‘nodes’ or ‘centers’, meaning that receptor points are zone nodes
or centers.

penalty=1 means that a candidate donor cell located at a zone border is penalized
against interior candidate cell.

nature=0 means that a candidate donor cell containing a blanked point(cellN=0) is
not valid. If nature=1 all the nodes of the candidate donor cell must be cellN=1 to
be valid.

double_wall=1 activates the double wall correction. If there are walls defined by
families in aR or aD, the corresponding top trees topTreeRcv or/and topTreeDnr
must be defined.

If sameName=1, interpolation from donor zones with the same name as receptor
zones are avoided.

Warning: currently, no periodic Chimera taken into account by this function
automatically.

Interpolation data are stored as a ZoneSubRegion_t node, stored under the donor or
receptor zone node depending of the storage.

Example of use:

• Compute interpolation connectivity (pyTree):

- setInterpData (pyTree) -
import Converter.PyTree as C
import Generator.PyTree as G
import Connector.PyTree as X

(continues on next page)

30 Chapter 3. Contents

Examples/Connector/setInterpDataPT.py

Connector Documentation, Release 3.3

(continued from previous page)

a = G.cylinder((0,0,0),1.,3.,360,0,1,(200,30,2)); a[0] = 'cylindre1'
a = C.addBC2Zone(a, 'wall1', 'BCWall', 'jmin')
a = C.addBC2Zone(a, 'ov1', 'BCOverlap', 'jmax')
b = G.cylinder((4,0,0),1.,3.,360,0,1,(200,30,2)); b[0] = 'cylindre2'
b = C.addBC2Zone(b, 'wall1', 'BCWall', 'jmin')
b = C.addBC2Zone(b, 'ov1', 'BCOverlap', 'jmax')
c = G.cart((-5.,-7.5,0), (15./200,15./200,1), (200,200,2))
t = C.newPyTree(['Corps1', 'Corps2', 'Bgrd'])
t[2][1][2].append(a); t[2][2][2].append(b); t[2][3][2].append(c)
t = X.connectMatch(t, dim=2)
t = C.fillEmptyBCWith(t, 'nref', 'BCFarfield', dim=2)
t = X.applyBCOverlaps(t, depth=1)
t[2][2:] = X.setInterpData(t[2][1], t[2][2:], loc='centers', storage='inverse')
C.convertPyTree2File(t, "out.cgns")

Connector.PyTree.getOversetInfo(tR, tD, type=’interpolated’)
Set information on Chimera connectivity, i.e. interpolated, extrapolated or orphan
cells, donor aspect ratio and ratio between volume of donor and receptor cells.
This function is compliant with the storage as defined for setInterpData function.
If type=’interpolated’, variable ‘interpolated’ is created and is equal to 1 for interpo-
lated and extrapolated points, 0 otherwise. If type=’extrapolated’, variable ‘extrap-
olated’ is created and its value is the sum of the absolute values of coefficients, 0
otherwise. If type=’orphan’, variable ‘orphan’ is created and is equal to 1 for orphan
points, 0 otherwise. If type=’cellRatio’, variable ‘cellRatio’ is created and is equal to
max(volD/volR,volR/volD) for interpolated and extrapolated points (volR and volD
are volume of receptors and donors). If type=’donorAspect’, variable ‘donorAspect’
is created and is equal to the ratio between the maximum and minimum length of
donors, and 0 for points that are not interpolated.

Example of use:

• Get overset information (pyTree):

- getOversetInfo (pyTree) -
import Converter.PyTree as C
import Generator.PyTree as G
import Connector.PyTree as X

a = G.cylinder((0,0,0),1.,3.,360,0,1,(200,30,4)); a[0] = 'cylindre1'
a = C.addBC2Zone(a, 'wall1', 'BCWall', 'jmin')
a = C.addBC2Zone(a, 'ov1', 'BCOverlap', 'jmax')
b = G.cylinder((4,0,0),1.,3.,360,0,1,(200,30,4)); b[0] = 'cylindre2'
b = C.addBC2Zone(b, 'wall1', 'BCWall', 'jmin')

(continues on next page)

3.2. Overset connectivity 31

Examples/Connector/getOversetInfoPT.py

Connector Documentation, Release 3.3

(continued from previous page)

b = C.addBC2Zone(b, 'ov1', 'BCOverlap', 'jmax')
c = G.cart((-5.,-7.5,-2), (15./200,15./200,1), (200,200,8))
t = C.newPyTree(['Corps1', 'Corps2', 'Bgrd'])
t[2][1][2].append(a); t[2][2][2].append(b); t[2][3][2].append(c)
t = X.connectMatch(t, dim=3)
t = C.fillEmptyBCWith(t, 'nref', 'BCFarfield', dim=3)
t = X.applyBCOverlaps(t, depth=1,loc='centers')
t[2][1][2] = X.setInterpData(t[2][1][2], t, loc='centers',

storage='direct', sameName=1)
t = X.getOversetInfo(t, t, loc='centers', type='interpolated')
t = X.getOversetInfo(t, t, loc='centers', type='orphan')
C.convertPyTree2File(t, "out.cgns")

Connector.PyTree.extractChimeraInfo(t, type=’interpolated’, loc=’centers’)
Extract some Chimera information (interpolated, extrapolated, orphan points or ex-
trapolated points with a sum of coefficients greater than a given value). Func-
tion chimeraInfo or oversetInfo must be applied first to compute the interpo-
lated/extrapolated/orphan fields. Information is extracted as ‘NODE’-type zones,
whose names are suffixed by the original zone names. If no zone is extracted, re-
turns []. Location loc must be compliant with the location of interpolation data (i.e.
location of Chimera receptor points).

If type=’interpolated’, interpolated and extrapolated points are extracted. If
type=’extrapolated’, extrapolated points are extracted. If type=’orphan’, orphan
points are extracted. If type=’cf>value’, extrapolated points where the sum of abso-
lute coefficients is greater than value are extracted.

Example of use:

• Extract chimera points (pyTree):

- chimeraInfo (pyTree) -
import Converter.PyTree as C
import Generator.PyTree as G
import Connector.PyTree as X

a = G.cylinder((0,0,0),1.,3.,360,0,1,(200,30,4)); a[0] = 'cylindre1'
C._addBC2Zone(a, 'wall1', 'BCWall', 'jmin')
C._addBC2Zone(a, 'ov1', 'BCOverlap', 'jmax')
b = G.cylinder((4,0,0),1.,3.,360,0,1,(200,30,4)); b[0] = 'cylindre2'
C._addBC2Zone(b, 'wall1', 'BCWall', 'jmin')
C._addBC2Zone(b, 'ov1', 'BCOverlap', 'jmax')
t = C.newPyTree(['Cyl1',a,'Cyl2',b])
t = X.connectMatch(t, dim=3)
C._fillEmptyBCWith(t,'nref','BCFarfield', dim=3)

(continues on next page)

32 Chapter 3. Contents

Examples/Connector/extractChimeraInfoPT.py

Connector Documentation, Release 3.3

(continued from previous page)

C._initVars(t[2][2],'centers:cellN',2)
t = X.setInterpolations(t, loc='cell', double_wall=1, storage='direct')
X._chimeraInfo(t, type='orphan')
orphanPts = X.extractChimeraInfo(t,type='orphan')
C.convertPyTree2File(orphanPts, "orphanPts.cgns")
X._chimeraInfo(t,type='extrapolated')
out = X.extractChimeraInfo(t,type='cf>1.5')
C.convertPyTree2File(out,"out.cgns")

3.3 Overset grid connectivity for elsA solver

Connector.PyTree.setInterpolations(t, loc=’cell’, double_wall=0, stor-
age=’inverse’, prefixFile=”, sameBase=0,
solver=’elsA’, nGhostCells=2, parallel-
Datas=[], cfMax=30., planarTol=0.,
check=True)

This function is specific to elsA solver. Set the Chimera connectivity (EX points and
cell centers to be interpolated, index for donor interpolation cell and interpolation
coefficients). Double wall projection technique is activated if ‘double_wall=1’. Pa-
rameter planarTol can be useful for double wall cases, in the case when double wall
surfaces are planar but distant from planarTol to each other. Parameter ‘sameBase=1’
means that donor zones can be found in the same base as the current zone.

parallelDatas=[graph,rank,listOfInterpCells] is defined only in a coupling context.
It contains the graph of communication, the rank of the current processor and the
list of interpolated cells/faces indices. graph is a Python dictionary with the follow-
ing structure : graph[proc1][proc2] gives the list of zones on processeur 1 which
intersect with zones on processor 2. loc=’cell’ or ‘face’ indicates the location of the
interpolated points (cell center or face). Interpolations with location at ‘face’ corre-
spond to interpolation for EX points according to elsA solver.

storage can be ‘direct’ (interpolation data stored in receptor zones) or ‘inverse’ (data
stored in donor zones). Value storage=’direct’ is only valid if Chimera connectivity
is read by elsA solver as Chimera connectivity files.

In a distributed mode, the storage must be necessarily ‘inverse’. If the Chimera con-
nectivity is read by elsA directly as CGNS ZoneSubRegion_t nodes, then the storage
must be ‘inverse’ too. prefixFile is the prefix for the name of the connectivity files
generated for elsA solver (solver=’elsA’) or Cassiopee solver (solver=’Cassiopee’). If
prefixFile is not specified by the user, no Chimera connectivity file is dumped.

nGhostCells is the number of ghost cells that are required by elsA solver when writing
connectivity files. Can be greater than 2 only if elsA reads the Chimera connectivity

3.3. Overset grid connectivity for elsA solver 33

Connector Documentation, Release 3.3

files. cfMax is a threshold value for a valid extrapolation: if the sum of the extrapo-
lated coefficients is greater than cfMax, then the cell is marked as orphan.

parallelDatas: used to perform setInterpolations in a distributed context : a list of
communication information [graph, rank, interpPts], where interpPts is the list of
interpolated cells/EX points.

Parameter check is a Boolean which displays the summary of interpolated, extrapo-
lated and orphan points.

Exists also as an in-place function (X._setInterpolations):

Example of use:

• set interpolations (pyTree):

- setInterpolation (pyTree) -
import Converter.PyTree as C
import Generator.PyTree as G
import Connector.PyTree as X

a = G.cylinder((0,0,0),1.,3.,360,0,1,(200,30,2)); a[0] = 'cylindre1'
a = C.addBC2Zone(a, 'wall1', 'BCWall', 'jmin')
a = C.addBC2Zone(a, 'ov1', 'BCOverlap', 'jmax')
b = G.cylinder((4,0,0),1.,3.,360,0,1,(200,30,2)); b[0] = 'cylindre2'
b = C.addBC2Zone(b, 'wall1', 'BCWall', 'jmin')
b = C.addBC2Zone(b, 'ov1', 'BCOverlap', 'jmax')
c = G.cart((-5.,-7.5,0), (15./200,15./200,1), (200,200,2))
t = C.newPyTree(['Corps1', 'Corps2', 'Bgrd'])
t[2][1][2].append(a); t[2][2][2].append(b);t[2][3][2].append(c)
t = X.connectMatch(t, dim=2)
t = C.fillEmptyBCWith(t,'nref','BCFarfield', dim=2)
t = X.applyBCOverlaps(t, depth=1)
t = X.setInterpolations(t, loc='cell', prefixFile='chimData')
C.convertPyTree2File(t, "out.cgns")

Connector.PyTree.chimeraTransfer(t, storage=’direct’, variables=[], loc=’cell’,
mesh=’extended’)

Compute Chimera transfers. This function is compliant with the storage as it is de-
fined for setInterpolations function.

Parameter storage can be ‘direct’ or ‘inverse’ and must be consistent with the storage
computed by setInterpolations

Parameter ‘variables’ specifies the variables for which the transfer is applied.

Parameter loc can be ‘cell’ or ‘face’ to transfer the variables at cell centers or EX
points.

34 Chapter 3. Contents

Examples/Connector/setInterpolationsPT.py

Connector Documentation, Release 3.3

Parameter mesh can be ‘standard’ or ‘extended’. For elsA simulations, it is mandatory
to use mesh=’extended’ and storage=’inverse’.

Exists also as an in-place function (X._chimeraTransfer)

Example of use:

• compute Chimera transfers (pyTree):

- chimeraTransfer (pyTree) -
import Converter.PyTree as C
import Generator.PyTree as G
import Connector.PyTree as X

a = G.cylinder((0,0,0),1.,3.,360,0,1,(200,30,3)); a[0] = 'cylindre1'
C._addBC2Zone(a, 'wall1', 'BCWall', 'jmin')
C._addBC2Zone(a, 'ov1', 'BCOverlap', 'jmax')
b = G.cylinder((4,0,0),1.,3.,360,0,1,(200,30,3)); b[0] = 'cylindre2'
C._addBC2Zone(b, 'wall1', 'BCWall', 'jmin')
C._addBC2Zone(b, 'ov1', 'BCOverlap', 'jmax')
c = G.cart((-5.,-7.5,0), (15./200,15./200,1), (200,200,3))
t = C.newPyTree(['Corps1','Corps2','Bgrd'])
t[2][1][2].append(a); t[2][2][2].append(b); t[2][3][2].append(c)
t = X.connectMatch(t, dim=2)
C._fillEmptyBCWith(t,'nref','BCFarfield', dim=3)
X._applyBCOverlaps(t, depth=2)
t = X.setInterpolations(t, storage = 'direct')
for i in range(len(t[2])):

C._initVars(t[2][i], 'centers:Density', float(i+1))
C._initVars(t[2][i], 'centers:MomentumX', float(i+1))
C._initVars(t[2][i], 'centers:MomentumY', float(i+1))
C._initVars(t[2][i], 'centers:MomentumZ', float(i+1))
C._initVars(t[2][i], 'centers:StagnationEnergy', float(i+1))

t = X.chimeraTransfer(t, storage='direct', variables=['centers:Density',
→˓'centers:MomentumX','centers:MomentumY','centers:MomentumZ',
→˓'centers:StagnationEnergy'])
C.convertPyTree2File(t, 'out.cgns')

Connector.PyTree.chimeraInfo(t, type=’interpolated’)
Set information on Chimera connectivity, i.e. interpolated, extrapolated or orphan
cells, donor aspect ratio and ratio between volume of donor and receptor cells.

This function is compliant with the storage as it is defined for setInterpolations func-
tion.

If type=’interpolated’, variable ‘centers:interpolated’ is created and is equal to 1 for
interpolated and extrapolated cells, 0 otherwise.

3.3. Overset grid connectivity for elsA solver 35

Examples/Connector/chimeraTransferPT.py

Connector Documentation, Release 3.3

If type=’extrapolated’, variable ‘centers:extrapolated’ is created and its value is the
sum of the absolute values of coefficients, 0 otherwise.

If type=’orphan’, variable ‘centers:orphan’ is created and is equal to 1 for orphan
cells, 0 otherwise.

If type=’cellRatio’, variable ‘centers:cellRatio’ is created and is equal to
max(volD/volR,volR/volD) for interpolated and extrapolated cells (volR and volD
are volume of receptor and donor cells).

If type=’donorAspect’, variable ‘centers:donorAspect’ is created and is equal to the
ratio between the maximum and minimum length of donor cells, and 0 for cells that
are not interpolated.

Exists also as an in-place function (X._chimeraInfo)

Example of use:

• set Chimera information (pyTree):

- chimeraInfo (pyTree) -
import Converter.PyTree as C
import Generator.PyTree as G
import Connector.PyTree as X

a = G.cylinder((0,0,0),1.,3.,360,0,1,(200,30,4)); a[0] = 'cylindre1'
a = C.addBC2Zone(a, 'wall1', 'BCWall', 'jmin')
a = C.addBC2Zone(a, 'ov1', 'BCOverlap', 'jmax')
b = G.cylinder((4,0,0),1.,3.,360,0,1,(200,30,4)); b[0] = 'cylindre2'
b = C.addBC2Zone(b, 'wall1', 'BCWall', 'jmin')
b = C.addBC2Zone(b, 'ov1', 'BCOverlap', 'jmax')
c = G.cart((-5.,-7.5,-2), (15./200,15./200,1), (200,200,8))
t = C.newPyTree(['Corps1', 'Corps2', 'Bgrd'])
t[2][1][2].append(a); t[2][2][2].append(b); t[2][3][2].append(c)
t = X.connectMatch(t, dim=3)
t = C.fillEmptyBCWith(t,'nref','BCFarfield', dim=3)
t = X.applyBCOverlaps(t, depth=1)
t = X.setInterpolations(t, loc='cell', double_wall=1, storage='direct')
t = X.chimeraInfo(t, type='interpolated')
C.convertPyTree2File(t, "out.cgns")

36 Chapter 3. Contents

Examples/Connector/chimeraInfoPT.py

Connector Documentation, Release 3.3

3.4 Immersed boundary (IBM) pre-processing

Connector.PyTree.setIBCData(aR, aD, order=2, penalty=0, nature=0,
method=’lagrangian’, loc=’nodes’, storage=’direct’,
he=0., hi=0., dim=3)

Compute and store IBM information (donor and receptor points, interpolation type,
interpolation coefficients, coordinates of corrected, wall and interpolated points)
given receptors defined by aR, donor zones given by aD.

• If storage=’direct’, then aR with interpolation data stored in receptor zones are
returned, and if storage=’inverse’, then aD with interpolation data stored in
donor zones are returned.

• Donor zones can be structured or unstructured TETRA. receptor zones can be
structured or unstructured ;

• Interpolation order can be 2, 3 or 5 for structured donor zones, only order=2
for unstructured donor zones is performed ;

• Parameter loc can ‘nodes’ or ‘centers’, meaning that receptor points are zone
nodes or centers ;

• penalty=1 means that a candidate donor cell located at a zone border is penal-
ized against interior candidate cell ;

• nature=0 means that a candidate donor cell containing a blanked
point(cellN=0) is not valid. If nature=1 all the nodes of the candidate donor
cell must be cellN=1 to be valid ;

• Interpolation data are stored as a ZoneSubRegion_t node, stored under the
donor or receptor zone node depending of the storage ;

• aR must contain information about distances and normals to bodies, de-
fined by ‘TurbulentDistance’,’gradxTurbulentDistance’,’gradyTurbulentDistance’
and ‘gradzTurbulentDistance’, located at nodes or cell centers ;

• Corrected points are defined in aR as points with cellN=2, located at nodes or
cell centers ;

• Parameter he is a constant, meaning that the interpolated points are pushed
away of a distance he from the IBC points if these are external to the bodies ;

• Parameter hi is a constant. If hi=0., then the interpolated points are mirror
points of IBC points. If hi>0., then these mirror points are then pushed away of
hi from their initial position ;

• hi and he can be defined as a field (located at nodes or centers) for any point.

Example of use:

3.4. Immersed boundary (IBM) pre-processing 37

Connector Documentation, Release 3.3

• set IBM data in the pyTree (pyTree):

- setIBCData (pyTree) -
import Converter.PyTree as C
import Generator.PyTree as G
import Connector.PyTree as X
import Post.PyTree as P
import numpy as N
import Dist2Walls.PyTree as DTW
import Transform.PyTree as T

a = G.cart((-1,-1,-1),(0.01,0.01,1),(201,201,3))
s = G.cylinder((0,0,-1), 0, 0.4, 360, 0, 4, (30,30,5))
s = C.convertArray2Tetra(s); s = T.join(s); s = P.exteriorFaces(s)
t = C.newPyTree(['Base',a])
Blanking
bodies = [[s]]
BM = N.array([[1]],N.int32)
t = X.blankCells(t,bodies,BM,blankingType='center_in')
t = X.setHoleInterpolatedPoints(t, depth=-2)
Dist2Walls
DTW._distance2Walls(t,[s],type='ortho',loc='centers',signed=1)
t = C.center2Node(t,'centers:TurbulentDistance')
Gradient de distance localise en centres => normales
t = P.computeGrad(t, 'TurbulentDistance')
t = X.setIBCData(t, t, loc='centers', storage='direct',hi=0.03)
C.convertPyTree2File(t, "out.cgns")

Connector.ToolboxIBM.prepareIBMData(t, tb, DEPTH=2, loc=’centers’, front-
Type=1)

Compute and store all the information required for IBM computations. For Euler
computations, corrected points are inside body, for viscous computations, corrected
points are outside body.

Parameters

• t (pyTree) – pyTree defining the computational domain as a struc-
tured mesh

• tb (pyTree) – pyTree defining the obstacles. Each obstacle must be
defined in a CGNS basis as a surface closed mesh, whose normals
must be oriented towards the fluid region

• DEPTH (integer) – number of layers of IBM corrected points (usu-
ally 2 meaning 2 ghost cells are required)

• loc (string) – location of IBM points: at nodes if loc=’nodes’ or
at cell centers if loc=’centers’ (‘centers’default)

38 Chapter 3. Contents

Examples/Connector/setIBCDataPT.py

Connector Documentation, Release 3.3

• frontType (integer [0-2]) – 0: constant distance front, 1: mini-
mum distance front, 2: adapted distance front

Returns t, tc

Return type pyTree

The problem dimension (2 or 3D) and the equation model (Euler, Navier-Stokes or
RANS) are required in tb.

Output datas are:

• the pyTree t with a ‘cellN’ field located at nodes or centers, marking as com-
puted/updated/blanked points for the solver (cellN=1/2/0).

• a donor pyTree tc storing all the information required to transfer then the solu-
tion at cellN=2 points:

Example of use:

• compute the IBM preprocessing (pyTree):

- prepareIBMData (pyTree) -
import Converter.PyTree as C
import Generator.PyTree as G
import Connector.ToolboxIBM as IBM
import Post.PyTree as P
import Geom.PyTree as D
import Dist2Walls.PyTree as DTW
N = 51
a = G.cart((0,0,0),(1./(N-1),1./(N-1),1./(N-1)),(N,N,N))
body = D.sphere((0.5,0,0),0.1,N=20)
t = C.newPyTree(['Base', a])
tb = C.newPyTree(['Base', body])
tb = C.addState(tb, 'EquationDimension',3)
tb = C.addState(tb, 'GoverningEquations', 'NSTurbulent')
DTW._distance2Walls(t,bodies=tb,loc='centers',type='ortho')
t = P.computeGrad(t,'centers:TurbulentDistance')
t,tc=IBM.prepareIBMData(t,tb, DEPTH=2,frontType=1)
C.convertPyTree2File(t,'t.cgns')
C.convertPyTree2File(t,'tc.cgns')

Warning: requires Connector.ToolboxIBM.py module.

Connector.ToolboxIBM.extractIBMInfo(a)
Extract the IBM particular points once the IBM data is computed and stored in a

3.4. Immersed boundary (IBM) pre-processing 39

Examples/Connector/prepareIBMDataPT.py

Connector Documentation, Release 3.3

pyTree. These points are the IBM points that are marked as updated points for the
IBM approach and the corresponding wall and interpolated (in fluid) points.

If information is stored in the donor pyTree tc, then a=tc, else a must define the
receptor pyTree t.

Example of use:

• extract all the IBM points (pyTree):

- prepareIBMData (pyTree) -
import Converter.PyTree as C
import Generator.PyTree as G
import Connector.ToolboxIBM as IBM
import Post.PyTree as P
import Geom.PyTree as D
import Dist2Walls.PyTree as DTW

N = 21
a = G.cart((0,0,0),(1./(N-1),1./(N-1),1./(N-1)),(N,N,N))
body = D.sphere((0.5,0,0),0.1,N=20)
t = C.newPyTree(['Base',a])
tb = C.newPyTree(['Base',body])
tb = C.addState(tb, 'EquationDimension',3)
tb = C.addState(tb, 'GoverningEquations', 'NSTurbulent')
t = DTW.distance2Walls(t,bodies=tb,loc='centers',type='ortho')
t = P.computeGrad(t,'centers:TurbulentDistance')
t,tc=IBM.prepareIBMData(t,tb, DEPTH=2)
res = IBM.extractIBMInfo(tc)
C.convertPyTree2File(res,"res.cgns")

Warning: requires Connector.ToolboxIBM.py module.

Connector.ToolboxIBM.extractIBMWallFields(a, tb=None)
Extract the solution at walls. If IBM data is stored in donor pyTree tc, then a must be
tc, else a is the pyTree t.

If tb is None, then tw is the cloud of wall points. If tb is a triangular surface mesh,
then the solution extracted at cloud points is interpolated on the vertices of the tri-
angular mesh. a must contain the fields in the ZoneSubRegions of name prefixed by
‘IBCD’.

Example of use:

• Extract the solution on the wall (pyTree):

40 Chapter 3. Contents

Examples/Connector/extractIBMInfoPT.py
Examples/Connector/extractIBMWallFieldsPT.py

Connector Documentation, Release 3.3

- Extraction des champs a la paroi(pyTree) -
import Converter.PyTree as C
import Generator.PyTree as G
import Connector.PyTree as X
import Geom.PyTree as D
import Post.PyTree as P
import Dist2Walls.PyTree as DTW
import Transform.PyTree as T
import Initiator.PyTree as I
import Converter.Internal as Internal
import Connector.ToolboxIBM as IBM
import KCore.test as test
import numpy
N = 41
a = G.cart((0,0,0),(1./(N-1),1./(N-1),1./(N-1)),(N,N,N))
xm = 0.5*N/(N-1)
s = D.sphere((xm,xm,xm),0.1,N=20)
s = C.convertArray2Tetra(s); s = G.close(s)
t = C.newPyTree(['Base']); t[2][1][2] = [a]

Blanking
bodies = [[s]]
BM = numpy.array([[1]],numpy.int32)
t = X.blankCells(t,bodies,BM,blankingType='center_in')
t = X.setHoleInterpolatedPoints(t,depth=-2)
Dist2Walls
t = DTW.distance2Walls(t,[s],type='ortho',loc='centers',signed=1)
t = C.center2Node(t,'centers:TurbulentDistance')
Gradient de distance localise en centres => normales
t = P.computeGrad(t, 'TurbulentDistance')
t = I.initConst(t,MInf=0.2,loc='centers')
tc = C.node2Center(t)
t2 = X.setIBCData(t, tc, loc='centers', storage='direct')
t2 = X.setInterpTransfers(t2,tc,bcType=0,varType=1)
z = IBM.extractIBMWallFields(t2)
C.convertPyTree2File(z,"out.cgns")

Warning: requires Connector.ToolboxIBM.py module.

3.4. Immersed boundary (IBM) pre-processing 41

Connector Documentation, Release 3.3

42 Chapter 3. Contents

CHAPTER

FOUR

OVERSETAND IMMERSEDBOUNDARY TRANSFERSWITH
PYTREES

The following function enables to update the solution at some points,
marked as interpolated for overset and IBM approaches.

Connector.PyTree.setInterpTransfers(aR, topTreeD, variables=None,
variablesIBC=[’Density’, ’Mo-
mentumX’, ’MomentumY’,
’MomentumZ’, ’EnergyStag-
nationDensity’], bcType=0,
varType=1, storage=’unknown’)

General transfers from a set of donor zones defined by topTreeD to recep-
tor zones defined in aR.

Both Chimera and IBM transfers can be applied and are identified by
the prefix name of the ZoneSubRegion node created when computing the
overset or IBM interpolation data.

Parameter variables is the list of variable names that are transfered by
Chimera interpolation.

Parameter variablesIBC defines the name of the 5 variables used for IBM
transfers.

Parameter bcType can be 0 or 1 (see table below for details).

Parameter varType enables to define the meaning of variablesIBC, if their
name is not standard (see table below for more details).

Parameter storage enables to define how the information is stored (see
table below).

43

Connector Documentation, Release 3.3

Param-
eter
value

Meaning

bc-
Type=0

IBM transfers model slip conditions

bc-
Type=1

IBM transfers model no-slip conditions

var-
Type=1

Density,MomentumX,MomentumY,MomentumZ,EnergyStagnationDensity

var-
Type=2

Density,VelocityX,VelocityY,VelocityZ,Temperature

var-
Type=3

Density,VelocityX,VelocityY,VelocityZ,Pressure

stor-
age=0

Interpolation data is stored in receptor zones aR

stor-
age=1

Interpolation data is stored in donor zones topTreeD

storage=-
1

Interpolation data storage is unknown or can be stored in
donor and receptor zones.

ex-
tract=1

Wall fields are stored in zone subregions (density and pres-
sure, utau and yplus if wall law is applied).

Exists also as an in-place function (X._setInterpTransfers):

Example of use:

• Transfers the solution from donor zones to receptor zones (pyTree):

- setInterpTransfers (pyTree) -
import Converter.PyTree as C
import Connector.PyTree as X
import Generator.PyTree as G

a = G.cylinder((0,0,0), 1, 2, 0, 360, 1, (60, 20, 3))
b = G.cylinder((0,0,0), 1, 2, 3, 160, 1, (30, 10, 3))
a = C.addBC2Zone(a, 'wall', 'BCWall', 'jmin')
a = C.addBC2Zone(a, 'match', 'BCMatch', 'imin', a, 'imax', trirac=[1,
→˓2,3])
a = C.addBC2Zone(a, 'match', 'BCMatch', 'imax', a, 'imin', trirac=[1,
→˓2,3])
b = C.addBC2Zone(b, 'wall', 'BCWall', 'jmin')
b = C.addBC2Zone(b, 'overlap', 'BCOverlap', 'imin')
b = C.addBC2Zone(b, 'overlap', 'BCOverlap', 'imax')
t1 = C.newPyTree(['Base']); t1[2][1][2] = [a];

(continues on next page)

44 Chapter 4. Overset and Immersed Boundary transfers with pyTrees

Examples/Connector/setInterpTransfersPT.py

Connector Documentation, Release 3.3

(continued from previous page)

t2 = C.newPyTree(['Base']); t2[2][1][2] = [b]
t1 = C.fillEmptyBCWith(t1, 'nref', 'BCFarfield')
t2 = C.fillEmptyBCWith(t2, 'nref', 'BCFarfield')

t1 = C.initVars(t1, '{Density}= 1.')
t2 = C.initVars(t2, '{Density}=-1.')
t2 = C.node2Center(t2, ['Density'])

t2 = X.applyBCOverlaps(t2, depth=1)
t1 = X.setInterpData(t2, t1, double_wall=1, loc='centers',

storage='inverse', order=3)
t2 = X.setInterpTransfers(t2, t1, variables=['Density'])
C.convertPyTree2File(t2, 'out.cgns')

4.1 Index

• genindex

• modindex

• search

4.1. Index 45

	Preamble
	List of functions
	Contents
	Multiblock connectivity
	Overset connectivity
	Overset grid connectivity for elsA solver
	Immersed boundary (IBM) pre-processing

	Overset and Immersed Boundary transfers with pyTrees
	Index

