
Dist2Walls 2.5

Stephanie Peron, Christophe Benoit, Pascal Raud, Sam Landier

- Onera -

1 Dist2Walls: wall distance computation

1.1 Preamble

Dist2Walls gathers efficient algorithms for computing the distance fields for arrays (as defined in

Converter documentation) or for CGNS/python tree (pyTrees).

This module is part of Cassiopee, a free open-source pre- and post-processor for CFD simula-

tions.

When using the Converter array interface, a (or b) denotes an array, and A (or B) denotes a list

of arrays. Then, Dist2Walls module must be imported:

import Dist2Walls as DTW

When using the pyTree interface, import the module:

import Dist2Walls.PyTree as DTW

In that case, a is a zone node and A is a list of zone nodes or a pyTree.

1.2 Module functions

DTW.distance2Walls : computes the distance field from a set of bodies.

compute the distance field located at nodes or centers of zone a (or zones in A), provided a list of

surfaces defining the bodies to which the distance is computed.

Two algorithms are available:

- type=’ortho’ means a distance computed by an orthogonal projection to the surface faces defined

by bodies.

- type=’mininterf’ returns the minimum distance of the point to the vertices of bodies.

If loc=’nodes’, returns a distance computed at nodes of a (A), else if loc=’centers, distance is

computed at cell centers of a (A).

Parameter ’signed’=1 enables to compute a signed distance (negative inside bodies).

/ELSA/MU-10018/V2.5

1

When using signed distances, each body in bodies list must be a closed and watertight surface.

In array version, cellnbodies provides the ’cellN’ field for any vertex in bodies. Default value is 1.

The algorithm ’ortho’ does not take into account a body face if cellN=0 for all the vertices of that

face.

The algorithm ’mininterf’ does not compute the distance to a vertex of cellN=0.

b = DTW.distance2Walls(a, bodies, cellnbodies=[], type=’ortho’, loc=’centers’, signed=0,

dim=3) .or. B = DTW.distance2Walls(A, bodies, cellnbodies=[], type=’ortho’, loc=’centers’,

signed=0, dim=3)

In the pyTree version, ’cellN’ variable must be stored in bodies directly.

If loc=’nodes’, the distance field is stored as a ’TurbulentDistance’ field located at nodes, and if

loc=’centers’, it is stored in nodes located at centers:

b = DTW.distance2Walls(a, bodies, type=’ortho’, loc=’centers’, signed=0, dim=3) .or. B =

DTW.distance2Walls(A, bodies, type=’ortho’, loc=’centers’, signed=0, dim=3)

(See: distance2Walls.py) (See: distance2WallsPT.py) (See: distance2FilePT.py)

1.3 Example files

Example file: distance2Walls.py

- distance2Walls (array) -

import Dist2Walls

import Generator as G

import Converter as C

import Geom as D

Bloc dont on cherche la distance a la paroi

a = G.cart((0.,0.,0.),(0.1,0.1,0.1),(10,10,10))

Paroi

sphere = D.sphere((1.2,0.,0.), 0.2, 30)

cellN = C.initVars(sphere,’cellN’,1.)

Calcul de la distance a la paroi

dist = Dist2Walls.distance2Walls(a, [sphere], cellnbodies=[cellN],

loc=’centers’,type=’ortho’)

ac = C.node2Center(a)

ac = C.addVars([ac, dist])

C.convertArrays2File([ac], ’out.plt’)

Example file: distance2WallsPT.py

- distance2Walls (pyTree) -

import Dist2Walls.PyTree as Dist2Walls

import Generator.PyTree as G

import Converter.PyTree as C

import Geom.PyTree as D

a = G.cart((0.,0.,0.),(0.1,0.1,0.1),(10,10,10))

sphere = D.sphere((1.2,0.,0.),0.2,100)

t = C.newPyTree([’Base’,a])

/ELSA/MU-10018/V2.5

2

t = Dist2Walls.distance2Walls(t, sphere)

C.convertPyTree2File(t, ’out.cgns’)

Example file: distance2FilePT.py

- distance2Walls (pyTree) -

- Dump TurbulentDistance node to a file -

import Dist2Walls.PyTree as DW

import Generator.PyTree as G

import Converter.PyTree as C

import Geom.PyTree as D

import Converter.Internal as Internal

import Converter

import numpy

a = G.cart((0.,0.,0.),(0.1,0.1,0.1),(10,10,10))

a = C.initVars(a,’centers:cellnf’,1.)

sphere = D.sphere((1.2,0.,0.),0.2,100)

sphere = C.initVars(sphere,’centers:cellnf’,1.)

t = C.newPyTree([’Base’,a])

bodies = C.newPyTree([’Bodies’,sphere])

t = DW.distance2Walls(t, bodies)

nodes = Internal.getNodesFromName(t, ’TurbulentDistance’)

c = 0

for n in nodes:

ni = n[1].shape[0]; nj = n[1].shape[1]; nk = n[1].shape[2]

a = numpy.reshape(n[1], (ni*nj*nk), order=’Fortran’)

a = numpy.reshape(a, (1,ni*nj*nk))

array = [’walldistance’, a, ni, nj, nk]

array = Converter.initVars(array, ’wallglobalindex’, 1)

Converter.convertArrays2File([array], ’dist’+str(c)+’.v3d’,

’bin_v3d’)

c += 1

/ELSA/MU-10018/V2.5

3

	Dist2Walls: wall distance computation
	Preamble
	Module functions
	Example files

